Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222650

RESUMEN

The ANOSPP amplicon panel is a genus-wide targeted sequencing panel to facilitate large-scale monitoring of Anopheles species diversity. Combining information from the 62 nuclear amplicons present in the ANOSPP panel allows for a more senstive and specific species assignment than single gene (e.g. COI) barcoding, which is desirable in the light of permeable species boundaries. Here, we present NNoVAE, a method using Nearest Neighbours (NN) and Variational Autoencoders (VAE), which we apply to k-mers resulting from the ANOSPP amplicon sequences in order to hierarchically assign species identity. The NN step assigns a sample to a species-group by comparing the k-mers arising from each haplotype's amplicon sequence to a reference database. The VAE step is required to distinguish between closely related species, and also has sufficient resolution to reveal population structure within species. In tests on independent samples with over 80% amplicon coverage, NNoVAE correctly classifies to species level 98% of samples within the An. gambiae complex and 89% of samples outside the complex. We apply NNoVAE to over two thousand new samples from Burkina Faso and Gabon, identifying unexpected species in Gabon. NNoVAE presents an approach that may be of value to other targeted sequencing panels, and is a method that will be used to survey Anopheles species diversity and Plasmodium transmission patterns through space and time on a large scale, with plans to analyse half a million mosquitoes in the next five years.


Asunto(s)
Anopheles , Animales , Anopheles/genética , Burkina Faso , Gabón
2.
J Gen Virol ; 103(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215163

RESUMEN

In Africa, several emerging zoonotic viruses have been transmitted from small mammals such as rodents and shrews to humans. Although no clinical cases of small mammal-borne viral diseases have been reported in Central Africa, potential zoonotic viruses have been identified in rodents in the region. Therefore, we hypothesized that there may be unrecognized zoonotic viruses circulating in small mammals in Central Africa. Here, we investigated viruses that have been maintained among wild small mammals in Gabon to understand their potential risks to humans. We identified novel orthonairoviruses in 24.6 % of captured rodents and shrews from their kidney total RNA samples. Phylogenetic analysis revealed that the novel viruses, Lamusara virus (LMSV) and Lamgora virus, were closely related to Erve virus, which was previously identified in shrews of the genus Crocidura and has been suspected to cause neuropathogenic diseases in humans. Moreover, we show that the LMSV ovarian tumour domain protease, one of the virulence determination factors of orthonairoviruses, suppressed interferon signalling in human cells, suggesting the possible human pathogenicity of this virus. Taken together, our study demonstrates the presence of novel orthonairoviruses that may pose unrecognized risks of viral disease transmission in Gabon.


Asunto(s)
Roedores , Musarañas , Virus , Animales , Gabón/epidemiología , Interferones/genética , Péptido Hidrolasas , Filogenia , ARN , Roedores/virología , Musarañas/virología , Virus/genética
3.
Int J Infect Dis ; 105: 452-459, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33667697

RESUMEN

OBJECTIVES: Lymphocytic choriomeningitis virus (LCMV), a human pathogenic arenavirus, is distributed worldwide. However, no human cases have been reported in Africa. This study aimed to investigate the current situation and potential risks of LCMV infection in Gabon, Central Africa. METHODS: A total of 492 human samples were screened to detect LCMV genome RNA and anti-LCMV IgG antibodies using reverse transcription-quantitative PCR and enzyme-linked immunosorbent assay (ELISA), respectively. ELISA-positive samples were further examined using a neutralization assay. Viral RNAs and antibodies were also analyzed in 326 animal samples, including rodents, shrews, and bushmeat. RESULTS: While no LCMV RNA was detected in human samples, the overall seroprevalence was 21.5% and was significantly higher in male and adult populations. The neutralization assay identified seven samples with neutralizing activity. LCMV RNA was detected in one species of rodent (Lophuromys sikapusi) and a porcupine, and anti-LCMV IgG antibodies were detected in four rodents and three shrews. CONCLUSIONS: This study determined for the first time the seroprevalence of LCMV in Gabon, and revealed that local rodents, shrews, and porcupines in areas surrounding semi-urban cities posed an infection risk. Hence, LCMV infection should be considered a significant public health concern in Africa.


Asunto(s)
Coriomeningitis Linfocítica/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Antivirales/sangre , Niño , Preescolar , Femenino , Gabón/epidemiología , Humanos , Lactante , Coriomeningitis Linfocítica/etiología , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Persona de Mediana Edad , ARN Viral/sangre , Estudios Seroepidemiológicos , Musarañas , Adulto Joven
4.
Evol Appl ; 12(8): 1583-1594, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31462916

RESUMEN

During the last decade, the endosymbiont bacterium Wolbachia has emerged as a biological tool for vector disease control. However, for long time, it was believed that Wolbachia was absent in natural populations of Anopheles. The recent discovery that species within the Anopheles gambiae complex host Wolbachia in natural conditions has opened new opportunities for malaria control research in Africa. Here, we investigated the prevalence and diversity of Wolbachia infection in 25 African Anopheles species in Gabon (Central Africa). Our results revealed the presence of Wolbachia in 16 of these species, including the major malaria vectors in this area. The infection prevalence varied greatly among species, confirming that sample size is a key factor to detect the infection. Moreover, our sequencing and phylogenetic analyses showed the important diversity of Wolbachia strains that infect Anopheles. Co-evolutionary analysis unveiled patterns of Wolbachia transmission within some Anopheles species, suggesting that past independent acquisition events were followed by co-cladogenesis. The large diversity of Wolbachia strains that infect natural populations of Anopheles offers a promising opportunity to select suitable phenotypes for suppressing Plasmodium transmission and/or manipulating Anopheles reproduction, which in turn could be used to reduce the malaria burden in Africa.

5.
Infect Genet Evol ; 12(7): 1558-66, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22721902

RESUMEN

This paper attempts to expand on the current knowledge regarding the evolutionary history of bat haemosporidian parasites. Using modern molecular tools as adjuncts to existing morphological descriptions, our understanding of the diversity of these parasites is discussed. The biogeography and host range distribution together with possible host-parasite interactions remain to be evaluated in more detail. Using a nested-PCR cytochrome b mitochondrial gene approach, we established a screening programme and survey of several months duration for haemosporidian parasites in four central African bat species living in an ecological community. The aim of the study was to describe parasites morphologically and molecularly, together with parasite prevalence variations over time, and evaluate parasite host-specificity in these sympatric cave bats. Over the survey period, Polychromophilus melanipherus was the only haemosporidian parasite identified in Miniopterus inflatus, with a continuous molecular prevalence of at least 60%. Molecular phylogenetic analyses show that P. melanipherus is a monophyletic group infecting Miniopterus bats which is, a sister group to P. murinus and Polychromophilus spp. This monophyletic group is composed of different cyt b haplotypes molecularly distantly related (but morphologically similar), circulating without geographic or host species distinction. This suggests that P. melanipherus is a species complex restricted to the family Miniopteridae. The phylogenetic analysis confirms that Polychromophilus parasites are distributed worldwide and supports the view that they are more closely related to avian haemosporidian parasites.


Asunto(s)
Quirópteros/parasitología , Citocromos b/genética , Haemosporida/genética , Infecciones Protozoarias en Animales/parasitología , Proteínas Protozoarias/genética , Animales , Cuevas , Eritrocitos/parasitología , Gabón/epidemiología , Haemosporida/citología , Haemosporida/fisiología , Haplotipos , Filogeografía , Infecciones Protozoarias en Animales/epidemiología , Análisis de Secuencia de ADN , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...